Abstract

In this study, microstructure analysis, yield strength at high temperatures and wear rate of hybrid A359/(SiC + Si3N4) composites were investigated. Different weight percent of (SiC + Si3N4) particles were introduced to synthesis the composites using stir/squeeze process. XRD, SEM, TEM and EDS were utilized to investigate the distribution of particles throughout the matrix, and the interfacial reaction at matrix/particle interface. It confirmed the existence of MgAl2O4 which enhances the wettability between the particles and the matrix, and the absence of particle agglomeration. The (SiC + Si3N4) addition not only enhances the hardness measurements but also leads to a reduction in the dendritic arm spacing (DAS). Moreover, it develops the wear performance and the yield strength at high temperatures. The developed composites provide a promising material suitable for automotive industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.