Abstract
Yttrium-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are indispensable elements of present-day turbine propulsion systems. The ones deposited with atmospheric plasma spraying (APS) are characterized by required low thermal conductivity, but they are unable to survive frequent thermomechanical loading and therefore their application is limited to parts remaining stationary. Expanding capability of TBCs is sought in various areas, but the one realized through modification of most proliferated apparatus used for plasma spraying (PS) (from radial to axial injection) and substituting micrometric powders with the nano-structured suspension needs least changes in the industry established procedures and offers the highest property improvement. The present experiment covered the deposition of ZrO2-8Y2O3 YSZ TBC using both atmospheric and suspension PS processes. They were performed with commercial micrometric and nano-structured YSZ (8% Y2O3) powders. The coatings morphology and microstructure were characterized with 3D profilometry, scanning and transmission electron microscopy (SEM/TEM) methods. Finally, the coating’s hardness and heat conductivity were measured. This complex approach allowed to state that PS of micrometric t’-ZrO2 powder having an admixture of m-ZrO2 phase is capable of only partial improvement in its homogenization. However, the suspension PS process of nano-structured powder eliminated any traces of the monoclinic phase from the coating. The TEM microstructure observations indicated that the suspension PS coating is built by in-flight solidified droplets as well as by the melted ones flattened on arrival. A surface layer of liquefied material on solid droplets increases their adhesion to surface asperities promoting pseudo-columnar growth of the coating. The preservation of monotonic slow increase of thermal conductivity during heating of the suspension PS coating means, that its pseudo-columnar microstructure is better suited to withstand high strains during such treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.