Abstract

A novel Zn biodegradable composite was produced by direct extrusion of Zn powders at room temperature. The powders were efficiently consolidated to a high relative density, and the composite reached a UTS higher than 120 MPa and elongation of almost 70%. Microstructural observations showed ultra-fine Zn grains decorated by well-dispersed ZnO clusters at the grain boundaries. The degradation behavior of the composite and an as-cast Zn reference accessed by immersion tests in HBSS for both materials were similar and gave an equivalent corrosion rate. Additional static immersion tests in DMEM + 5% FSB showed a similar corrosion rate (0.015 mm/y), but SEM analysis of the corroded surface suggested that the degradation process of each as-cast or DE consolidated composite differs. MTT assays with extracts of both as-cast and extruded composites showed similar cytotoxicity, which was dependent on the dilution of the extracts. It was concluded that the proposed methodology brings the potential for an interesting solution to produce a sound Zn-ZnO composite with good biocompatibility, satisfactory corrosion rate, and high yield strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call