Abstract

Artificial pinning center lattice formed in HTSC both chemically and by irradiation is believed to increase critical current and field although Abrikosov vortex core is in the normal state. The paper presents SEM-EDS, XRD and Hall effect (80-300 K at magnetic field 0.55 Tesla) data in YBCO microfilm on 276-steel tape with metal coating exposed to 5 MeV electrons (1014 cm-2 at 400 nA) in air. No long-living radioisotope was generated. This irradiation resulted in structure modification of microinterfaces YBCO-AgCu, ten times decrease in the magneto-resistance >T c, increase in the 2nd type phase transition steep. The charge carrier mobility μ decreased by a few orders of value, especially at T <100 K and 280 K, where Cooper pairs and magnons condensate, respectively. Within 80-300 K the tape is in mixed magnetic states of YBCO and steel substrate, thereby providing effective flux pinning by highly correlated non-superconducting state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call