Abstract

Magnetic thin films of NiFe and CoNiFe alloys were electrodeposited from three different deposition baths onto copper wires of 100-μm diameter. The magnetic and magnetoimpedance (MI) properties of the samples along with their microstructure were investigated as a function of thiourea additive concentrations (CT) in the plating bath. For all intermediate frequencies, the MI ratio increased with thiourea concentration in plating bath up to a critical concentration of 80mg/l and then decreased considerably. The change in MI with thiourea concentration in electrodeposition bath was attributed to the grain size reducing action of thiourea, which in turn enhances the soft magnetic properties of the films. At higher concentration of thiourea, the sulfur inclusion increased the magnetic softness and MI value enhanced considerably. The origin of MI lies in the combined effect of domain wall motion and spin rotation, which contributes to permeability. Inductance spectroscopy (IS) was used to evaluate the magnetic characteristic of the samples by modeling coated wires in terms of equivalent electrical circuit; namely parallel LR (inductance and resistance) circuit in series with series LR circuit. The domain wall motion was found to be greatly affected by thiourea addition in the bath, which was revealed through the study of variation of these circuit parameters. The domain wall motion thereby affects the magnetic softness of samples, which is reflected in the MI enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call