Abstract

Herein, phase pure and highly crystalline Ce:LuAG nano-ceramics were fabricated using a novel, ultra-fast microwave sintering approach. The influence of microwave sintering on the microstructural, photoluminescence, and dielectric characteristics of Ce:LuAG nano-ceramic powders was examined. Microwave-assisted sintering of Ce:LuAG nano-ceramic powders yielded high crystallinity, low lattice strain, and reduced grain size. The process also improved the sintering kinetics and enhanced the surface diffusion between the grains, resulting in enhanced luminescence and dielectric properties. The Cole-Cole impedance plots showed single semicircular arcs, indicating non-Debye relaxation and a high dielectric constant in the microwave-sintered Ce:LuAG nano-ceramic and highlighting its potential for use in optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.