Abstract

The microstructure of TiNi(or Ni)/TiC composite prepared by mechanical alloying (MA) of elemental Ti, Ni and C powders has been investigated in detail. The result shows that large agglomerates with size 3–10 mm were abruptly formed for Ti 50Ni 20C 30, Ti 40Ni 40C 20 and Ti 30Ni 50C 20 powders at the milling duration of 3 h 30 min–3 h 35 min, which suggests melting of the powders and subsequent quenching has occurred during MA. Transmission electron microscopy shows that spherical TiC grains, lath twin martensite (M) and B2 phase are directly formed after 3 h 35 min MA of Ti 50Ni 20C 30 powders. It is also found that there exists definite orientation relationships between M and B2 phases which are very close to those obtained by Otsuka et al. in equiatomic TiNi martensite. The resultant phases are predominantly TiC and M phases with a small amount of B2 phase for Ti 40NI 40C 20; and Ni and TiC phases for Ti 30Ni 50C 20 after 3 h 35 min of MA. The microstructure characteristics of the as-milled materials are very similar to those of melted and solidified ones, which proves that melting of the powders and subsequent quenching has really occurred during the MA process. We concluded that MA in Ti 50Ni 20C 30, Ti 40Ni 40C 20 and Ti 30Ni 50C 20 is not governed by a gradual diffusional reaction, but by a self-sustained high-temperature synthesis (SHS) one. The SHS reaction is believed to be triggered by the release of heat of formation of the TiC phase and ignited by the mechanical collisions. The thermodynamic and kinetic conditions for the SHS reaction is discussed, and it shows that MA is a versatile method in inducing SHS reaction in systems with large heat of formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.