Abstract

This paper presents an investigation on the effects of hydrothermal aging on Sheet Molding Compound (SMC) composite. Two different techniques were carried out to study the inner structure of aged SMC composite. Firstly, X-ray micro computed tomography (XµCT) was used to evaluate the changes using 3D images. The results showed cracks in all the composite structure with different shapes and volume in response to the hydrothermal conditions. The cracks results from the build up of an osmotic pressure in microcavities, which is proportional to water concentration. However, it was not possible to quantify separately the hydrothermal induced damage in the studied SMC composite material. Therefore, the XµCT analyzes were supplemented by a microscopic study. This step has been studied in terms of crack density evolution and crack propagation rate. The results obtained by XµCT technique and SEM observations show that the damage increases continuously with time and temperature during aging. The damage was found to be located in the voids contained in the matrix at early stage of aging. Then it is mostly developed into the fiber interface in the form of fiber/matrix interfacial debonding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.