Abstract

The microstructures of directionally solidified Ni-31Al-32Cr-6Mo (at.%)-xDy (x = 0, 0.1 wt.%) hypereutectic alloys were studied at different withdrawal rates. The results show that the microstructure changes from the planar eutectic to the cellular eutectic and the volume fraction of the primary Cr(Mo) dendrites decreases for the Dy-free alloy with the withdrawal rate varying from 6 μm/s to 30 μm/s. The addition of 0.1 wt.% Dy promotes the planar-to-cellular transition. Moreover, the white Dy-containing phase does not form in the alloy for the planar interface growth (6 μm/s), but it can occur in the boundary of eutectic cells for the cellular interface growth (30 μm/s). A sketchy model of the planar and cellular growth is supposed to interpret it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.