Abstract

Microstructure influence on corrosion behavior of an N-based tool alloy (Fe–Cr–V–N) has been studied. Electron microscopy analysis showed two types of hard phases in the alloy. One-pass mode scanning Kelvin force microscopy (KFM) was used to investigate relative nobility of the hard phases. Volta potential mapping indicates higher nobility for the hard phases than the alloy matrix, and, the V- and N-rich particles exhibit the highest Volta potential. Post-polarization analysis by SEM revealed localized dissolution initiated in matrix regions adjacent to hard phase particles, and the boundary region surrounding the Cr- and Mo-rich particles is more prone to localized corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.