Abstract

We demonstrate how a machine learning algorithm can be applied to predict and explain modern market microstructure phenomena. We investigate the efficacy of various microstructure measures and show that they continue to provide insights into price dynamics in current complex markets. Some microstructure features with apparent high explanatory power exhibit low predictive power, and vice versa. We also find that some microstructure-based measures are useful for out-of-sample prediction of various market statistics, leading to questions about the efficiency of markets. Our results are derived using 87 of the most liquid futures contracts across all asset classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.