Abstract

Several reaction-induced diffusion processes to fabricate high-density MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> materials are developed, and the critical current density ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) has been notably enhanced. In this study, microstructure in high-density MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> wires fabricated by an internal Mg diffusion (IMD) process has been investigated. The inner reacted region of the wire heat-treated at 640°C for 1 h shows dense polycrystalline MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> of 20-200 nm in grain sizes. Fine MgO and Mg <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Si particles of 10-30 nm in sizes are dispersed in this region. On the other hand, the outer region near the Ta sheath is composed of unreacted B and SiC powders, fine MgO particles and small voids. Sizes of voids in the IMD MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> wire are small compared with the PIT MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> wire. Oxidation of Mg in the IMD process forms fine dispersion of MgO which may be effective for flux pinning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call