Abstract
Boronizing processes were carried out at 900 °C, 950 °C and 1000 °C for 2, 4 and 6 h to improve the wear performance of Monel 400 alloy. According to microstructure analyses and nanoindentation tests, Ni2B, FeNiB and FeB phases were detected as dominant phases in the boronized layer. Apart from this, it was observed that the amount of Cu deposits in the boronized layers increased depending on the increasing boronizing temperature. After the boronizing process, the boride layer thickness and hardness values were found to be in the range of 32–272 μm and 12.76–17.83 GPa, respectively. From the results of dry sliding wear test, the wear volume loss values of the boronized Monel 400 alloy decreased by approximately 25 times compared to the untreated samples. The lowest volume loss value among all test samples was observed in the boronized sample at 950 °C for 4 h. In addition to the hardness value, it was determined that the morphology and mechanical properties of the boronized layer were also effective on the wear results. Plastic deformation, delamination and oxidation type wear mechanisms were observed as the dominant wear mechanisms in the room and high temperature tests of boronized samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.