Abstract

Ti-based coating has been used for biomaterials to improve biocompatibility, mechanical and corrosion properties. Each coating shows unique performance depending on a variety of factors such as coating microstructure and properties as well as in-service conditions. In this study, the microstructure, surface topography, hardness, adhesion and corrosion properties of Ti and TiN films on stainless steel 316L coated by cathodic arc physical vapor deposition process (PVD) were studied. The results showed that the surface roughness of 316L increased after being coated with Ti and TiN film as evidenced by the numerous particles and voids observed on the surface of both films. The hardness of 316L coated with Ti and TiN was increased by approximately 50% and 85%, respectively. Ti and TiN coated samples showed good adhesion strength with the first critical load (LC1) of approximately 10N and 15N, respectively. However, the types of film failure for Ti and TiN were found to be different. Partial delamination with a high degree of plastic deformation was observed for Ti coating, whereas surface cracks were found for TiN coating. This finding is likely attributable to the difference in flow resistance and the amount of particles and voids observed. All samples showed a stable passive region during 7 days of immersion in Ringer’s solution. Ti film showed better corrosion resistance than TiN, which may have been caused by the effect of more voids on TiN surfaces formed by PVD coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call