Abstract

The surface of AZ31 magnesium substrate is coated by Zn-Al alloys using cast-penetrated cladding. The transverse section of alloy cladding is composed of cladding zone, diffusional zone, and bonding zone. The microstructure evolution, phase constitution, and chemical composition of the transition layer are studied. The experimental results exhibit cladding zone contained dendrite matrix and interdendritic eutectic structures. The plume eutectic structure and columnar eutectic structure are formed in diffusional zone and bonding zone, respectively. Zn and Al solid solutions gradually decrease and disappear owing to the diffusion of magnesium atom and the changes of magnesium element concentration. Mg7Zn3 phases are generated rapidly due to the interdiffusion of zinc and magnesium atoms rapidly in the diffusional zone and bonding zone. As Mg-Zn eutectic phases hinder the movement of Mg and Al atoms, the Mg-Al intermetallic compounds are eliminated completely. The microstructure is transformed into Mg solid solution and Mg7Zn3 eutectic structure to combine with AZ31 base metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.