Abstract
ABSTRACTFrom the outlook of healthcare, economic importance and supply risk, utilisation of raw materials like tungsten, cobalt and nickel should be reduced or replaced with other metals. Nontoxic titanium carbide and iron are the top-of-the-line solution for displacing these materials. Our focus was on conventionally fabricated titanium carbide-based cermets with a chromium ferritic steel binder. To study microstructural evolution, specimens were sintered at different temperatures (600–1500°C). We used a scanning electron microscopy, X-ray diffraction and differential scanning calorimetry to analyse the microstructure and phase formation of the cermets. Our results showed that during the solid and liquid phase sintering of the TiC–FeCr cermet, chromium ferrous complex carbides M7C3 are formed and as a result, chromium content in the binder phase is decreased. Alloying TiC–FeCr cermets with strong carbide formers improves the structural homogeneity of the cermets. Also, mechanical characteristics (hardness, fracture toughness) were evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.