Abstract

TC4 titanium alloy was vacuum-brazed to 316L stainless steel (SS) with Ti-Zr-Cu amorphous filler metal. The effect of brazing time and temperature on the interfacial microstructure and mechanical properties of joints was investigated. Electron probe micro-analyzer (EPMA) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) were used to study the joint microstructure; meanwhile, the reaction phases on fracture surfaces were identified by X-ray diffraction (XRD). The results show that all joints had similar interfacial microstructure of TC4 titanium substrate/Widmanstatten/β-Ti + Ti2Cu/(α-Ti + λ-Cu2TiZr) + Ti2Cu/Ti-Fe-Cu/TiFe/(Fe, Cr)2Ti/σ-phase + Fess/316L stainless steel substrate. Three reaction layers TiFe/(Fe, Cr)2Ti/σ-phase + Fess formed close to 316L stainless steel substrate and could benefit the mechanical properties of joints. The maximum shear strength of 65 MPa was obtained at 950 °C for 10 min. During shear test, cracks initiated at the interface of Ti-Cu-Fe layer/TiFe layer and propagated along the brazed seam/316L interface with a large amount of cleavage facets existing on the fracture surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call