Abstract

Polyimide films are widely used in space with extreme environments, where high energy beam irradiation and corresponding coupling treatment could occur. The combined effect of high energy electrons (1.2 MeV) and high tensile stress (50 MPa) on the degradation behavior of polyimide films was studied by means of scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mechanical testing. The degradation of polyimide films was evaluated by analyzing the microstructure and mechanical properties. The results indicated that the external tensile stress and irradiation coupling treatment resulted in the breakage of a larger number of chemical bonds and greater deterioration of the surface quality when compared with the irradiated polyimide samples. After irradiation-load coupling treatment, numerous micro-cracks were formed on the polyimide surface, facilitating the diffusion of oxygen into polyimide films and thus increasing the probability of free radical reactions. Moreover, the coupling treatment led to a more significant decrease in tensile strength and elongation of polyimide films by 10% and 35%, respectively. The mechanism of molecular chains' scission and crosslinking as well as correlations between molecular chains and mechanical performances were discussed. The obtained results indicated that the external tensile stress accelerates the degradation process during electron beam irradiation; thus, the tensile stress potentially seriously deteriorates polyimide film properties in irradiated environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.