Abstract

The production of radioactive ion beams by the isotope mass separation online (ISOL) method requires a fast diffusion and effusion of nuclear products from thick refractory target materials under high-energy particle beam irradiation. A new generation of ISOL nanostructured and submicrometric porous materials have been developed, exhibiting enhanced release of exotic isotopes, compared to previously used conventional micrometric materials. A programme was developed at PSI within the framework sof the Design Study of EURISOL, the next generation European ISOL-type facility to study aging under irradiation on porous ceramic pellets and dense thin metal foils at high temperatures. Ceramic oxides and carbide samples underwent proton damage with fluence up to 3.0 × 10 20 and 1.3 × 10 21 cm −2 respectively. The post-irradiation examination on Al 2O 3, Y 2O 3 and SiC – C nanotube composite matrices show a proton-induced densification region in which a moderate grain growth occurred. The microstructural evolution effects were associated to the combination of radiation-enhanced diffusion and thermal diffusion. The irradiated Al 2O 3 shows higher sintering rates than in similar non-irradiation isothermal conditions, in particular at the lowest irradiation temperature, subjected to a proton fluence inferior to 1.1 × 10 15 cm −2. The apparent activation energy for its sintering controlling mechanism was found to be between 44 and 88 kJ mol −1. However, despite the enhanced sintering, shrinkage and increased grain growth, the selected nanostructured and submicrometric TARPIPE materials did not display an average grain diameter above 2 μm, which confirms that these materials are suited as production targets for present and next generation ISOL facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.