Abstract

The tensile creep behavior of extruded Mg–6Gd alloy, having the tensile yield strength of ~ 110 MPa at 175 °C, has been investigated under 175 °C and 150 MPa. In this study, the extruded Mg–6Gd sample exhibits the total tensile strain of ~ 10.5% after the creep time of 1100 h, and the fast plastic strain of ~ 4.6% at the beginning of the creep test. The microstructure result suggests that the dislocation deformation is the main deformation mode during creep, and the grains with orientation close to 〈0001〉 || ED disappear after creep. The creep process containing a low creep strain has no effective promotion for the precipitation compared with the aging process without strain. The origination of creep crack is related to the formation of precipitate-free zone during creep. The work offers an important implication to research the microstructure evolution under an applied stress in a weak aging response Mg alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call