Abstract

In the present investigation, microstructural evolutions of functionally graded eutectic Al–Cu strips prepared by high-speed twin-roll strip caster at different casting speeds and liquid melt superheats were studied. The as-cast sample was subjected to scanning electron microscope to study the evolution of microstructure of the strip at different casting speeds and liquid melt superheats. At different casting speeds, non-equilibrium eutectic structure observed on the Al–Cu eutectic strip consists of lamellar as well as wavy structure with a distinct boundary. The lamellar microstructure consists of alternating layers of well-bonded α-Al phase and θ-Al2Cu phase. The globular flowery structure within the eutectic matrix was observed on the strip at different liquid melt superheats. The microhardness of the as-cast strip was studied by Vickers hardness tester, and it was found that hardness value increases with increasing casting speed and decreases with increasing liquid melt superheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call