Abstract
In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.