Abstract

A nanostructured surface layer was fabricated on a AZ91D magnesium alloy by using a high-energy shot peening(HESP). HESP induced structure along the depth of the treated sample surface layer was characterized by means of X-ray diffractometer (XRD), transmission electron microscope(TEM) and high resolution transmission electron microscope(HRTEM). The experimental results show that a deformed layer of about 50 μm has formed after HESP treatment and the average grain size increases from about 40 nm in the surface layer to about 200 nm at the depth of 40 μm. The surface nanocrystallization can realize intercoordination of the dislocations slipping and dynamic recrystallization. The nanocrystalline grains have stacking faults and dislocation in their interiors. The microhardness of the top surface is about triplicate that of the coarse-grained matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.