Abstract

AlSn20Cu alloy is currently one of the most widely used bearing materials, and its microstructure is the most important indicator in application. In this paper, AlSn20Cu alloy ingots were prepared by two methods: ordinary casting and semi-continuous casting, and deformation and annealing process of the two ingots were studied. Scanning electron microscope (SEM) and Image Pro Plus software were used to observe and analyze the evolution of the microstructure, and the morphological information such as the average grain size and area fraction of the Sn phase was quantitatively characterized. The effects of casting method, deformation temperature, deformation amount and annealing temperature on the morphology of Sn phase were studied in this paper. Compared with ordinary casting, the cooling rate of semi-continuous casting is higher, so the Sn phase is smaller, the casting defects are less, and the deformability of the alloy is better. The AlSn20Cu alloy prepared by ordinary casting has better deformability at about 140 °C, while the AlSn20Cu alloy prepared by semi-continuous casting can be rolled and deformed at room temperature. When the deformation is greater than 40%, after annealing at 250 °C, the average grain size of the Sn phase in the AlSn20Cu alloy prepared by semi-continuous casting is around one hundred square microns and the area fraction is more than 10%, and the Sn phase morphology is better than ordinary casting alloy under any processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.