Abstract

The aim of the present study is to identify the ternary eutectic Mo-Si-B composition to produce directionally solidified materials, which are expected to have excellent high-temperature properties due to the well-defined microstructure. Different alloy compositions in the respective primary solidification areas of the phases were chosen to investigate the microstructural evolution. The results were compared to thermodynamic calculations of the liquidus projection and isopleth phase diagrams using the software FactSageTM. By carrying out these experiments the eutectic point was found to have a nominal composition of Mo-17.5Si-8B (at.%). In the next step, the eutectic alloy was directionally solidified by a zone melting (ZM) process. The evolution of a typical eutectic microstructure due to the growth of lamella-like structures is shown by microstructural investigations. Furthermore, we present a eutectic phase field model for the eutectic Mo-Si-B alloy. The equilibrium interface geometries and interface mobility were calculated using an isotropic model. The results are shown to be in an adequate conformity with the experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.