Abstract

γ-Al2O3/FeAl coatings for tritium permeation barrier (TPB) application in fusion reactors were fabricated via electro-chemical deposition and selective oxidation. The TPB coatings consisted of a γ-Al2O3 scale (200 nm), an upper interlayer of FeAl (20 μm) and a lower interlayer of Fe3Al (10 μm). Their potential in-reactor performance was investigated based on 6.4 MeV Fe3+ ion irradiations at 400 °C, up to ion fluences of 1.0 × 1019 ions·m−2 and 1.0 × 1020 ions·m−2, at depth regions entailing the oxide scale and the top interlayer. Combined grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis confirmed the overall phase stability and grain structure stability in γ-Al2O3/FeAl coatings after irradiation. Cavities dominated the damage microstructure for both γ-Al2O3 and FeAl phases, but were not observed at the sub-layer interfaces. The underlying mechanisms for defect production were discussed. Finally, a brief comparison between heavy-ion and fission neutron damage effects in Al2O3-based TPB coatings is made, aiming to bring new insights on the coating integrity and performance reliability during fusion reactor operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call