Abstract

Ceramic particulate embedded aluminum metal matrix nanocomposites (AMNCs) possess superior mechanical and surface properties and lightweight features. AMNCs are a suitable replacement of traditional material, i.e., steel, to make automotive parts. The current work deals with developing Si3N4 strengthened high strength AA7068 nanocomposites via novel ultrasonic-assisted stir casting method advanced with bottom pouring setup in the proportion of 0.5, 1.0, 1.5, and 2 wt.%. Planetary ball milling was performed on a mixture of AA7068 powder and Si3N4 (in the proportion of 3:1) before incorporation in aluminum alloy melt to avoid rejection of fine particles. Finite element scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), X-Ray diffraction (XRD), and Elemental mapping techniques were used in the microstructural investigation. Significant grain refinement was observed with increasing reinforcing content, whereas agglomeration was found at higher weight %. Hardness, Tensile strength, ductility, porosity content, compressive strength, and impact energy were also examined of pure alloy and each composite. Improvement of 72.71%, 50.07%, and 27.41 % was noticed in hardness value, tensile strength, and compressive strength, respectively, at 1.5 weight % compared to base alloy because of various strengthening mechanisms. These properties are decreased at 2 wt.% due to severe agglomeration. In contrast, nanocomposite’s ductility and impact strength continuously decrease compared to monolithic AA7068. Fracture analysis shows the ductile and mixed failure mode in alloy and nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call