Abstract

Dynamic structural changes during creep tests for about 103 hours at 600 and 650oC were investigated in a P92-type 9%Cr martensitic heat resistant steel. The structural changes are characterised by the development of relatively large equiaxed subgrains with relatively low dislocation densities in place of initial martensite laths. The coarsening of substructure was accompanied by a growth of second phase precipitates. The final grain/subgrain sizes and dislocation densities evolved after the creep tests were in rough correlation with applied stresses, i.e. larger (sub)grains developed under lower stresses. The structural mechanism responsible for microstructure evolution was considered as a kind of continuous dynamic recrystallization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call