Abstract

Based on 42CrMo steel, a steel with a higher C and Ni content is developed for use in large sized bearing rings. The impact energy and hardness of the quenched and tempered steel increase with the quenching temperature, but then decrease when the temperature is above 925 °C. When the temperature is below 925 °C, some larger M23C6-type carbides (with average diameters of 255.6 μm) exist in the quenched and tempered microstructure. The number of carbides is reduced as the quenching temperature increases. At the same time, the fracture modes change from microvoid coalescence and quasi-cleavage to microvoid coalescence. The number of round quasi-cleavage fractures, which are formed around the carbides, decrease as the number of carbides decrease. The existence of larger M23C6-type carbides leads to round quasi-cleavage fractures and decrease the impact energy. The precipitation strengthening of M23C6-type carbides increases the hardness at a quenching temperature of 925 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.