Abstract

Crack-free and almost fully dense (≥99%) bulk-form titanium matrix nanocomposites in-situ synthesized from a ball-milled mixture of Ti-6Al-4V and B4C powders were achieved through an optimized selective laser melting (SLM) process. The effects of minor B4C addition on microstructure evolution, hardness, compressive properties and fracture mechanisms of the composites were systematically investigated. The in-situ synthesized nanoscale TiBw or TiCp ceramic reinforcements, exhibiting a quasi-continuous (TMC1) or full-continuous structure (TMC2), could play a prominent role in determining the microstructure refinement and mechanical properties of the composites. Results indicate that the SLM-processed nanocomposites exhibit a maximum increase of 45% of Vickers microhardness and 26% of ultimate compressive strength over the Ti-64 alloy. The enhancement of mechanical properties is mainly attributed to the second-phase strengthening, grain refinement strengthening as well as solid solution strengthening induced by the interstitial carbon in Ti matrix. This study provides a novel solution for microstructure tailoring with minor B4C addition and producing high-performance titanium matrix composites via SLM additive manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.