Abstract

The influence of ageing time on microstructure and mechanical properties of low-cost beta (LCB) titanium alloy with a chemical composition of Ti-6.6Mo-4.5Fe-1.5Al was investigated. The correlation between microstructure and fatigue crack initiation and growth was also studied. Increasing ageing time tended to increase the volume fraction of the secondary α-precipitates, β-grain size and partial spheroidization of primary α-phase. The maximum tensile strength (1565 MPa) and fatigue limit (750 MPa) were obtained for the samples aged at 500 °C for 0.5 h, while the minimum ones of 1515 MPa and 625 MPa, respectively, were reported for the samples aged at 500 °C for 4 h. The samples aged at 500 °C for 4 h showed a transgranular fracture mode. However, the samples aged at 500 °C for 0.5 h revealed a mixture fracture mode of transgranular and intergranular. The formed cracks on the outer surface of the fatigue samples were found to propagate through the β-grains connecting the primary α-particles existing at the β-grain boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.