Abstract

In this work, multi-walled carbon nanotubes (MWCNTs) reinforced Sn-5Sb/Cu composite solder joints were synthesized and the effects of MWCNTs addition on the microstructure evolution and hardness of the Sn-5Sb solder alloy during various thermal aging conditions were investigated. After conducting a thorough microstructural analysis, the SbSn and Cu6Sn5 intermetallic compounds (IMCs) were observed in the β-Sn matrix of the composite solder joints subjected to reflow soldering while the latter was also present at the solder/Cu interface. However, after subjecting the composite solder joints to isothermal aging, the Cu3Sn IMC emerged between the Cu6Sn5 IMC at the solder/Cu interface and the Cu substrate. With the promising properties exhibited by MWCNTs as a reinforcement material, experimental results showed that MWCNTs refined the bulk solder microstructure and inhibited growth of the interfacial IMC layer in the Sn-5Sb-xCNT/Cu samples. In general, the composite sample reinforced with 0.05 wt% MWCNTs showed the least IMC layer thickness and diffusion coefficient in the ranges of 2.6–11.99 μm and 1.07 × 10−14-14.9 × 10−14 cm2/s respectively. Meanwhile, the strengthening mechanism triggered by MWCNTs addition was clearly evident in the MWCNT-reinforced Sn-5Sb/Cu as superior hardness values within a range of 20.6–15.3 HV were registered for the as-soldered and aged composite solder joints with 0.05 wt% MWCNTs reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.