Abstract

ABSTRACTAn Al–Cu–Mg–Si alloy was prepared by conventional press-sintering powder metallurgy using elemental Al powder. The phase transformation process of Al–Mg, Al–Si alloy and Cu during the sintering process was investigated in details. It was found that a series of phase transitions take place in the alloy to disrupt the oxide film of Al particle and enhance the densification process. The relative density of the sintered samples reached 98%. A new Al–Mg–Cu–O compound was found at the grain boundaries except the MgAl2O4 phase, it is speculated that the disruption of the oxide film was also associated with the other alloy compositions except for Mg. Furthermore, no detectable AlN compound was found at the grain boundary region although sintering with flowing nitrogen atmosphere, which is benefit from the high density of the green compact and the excellent wettability between the liquid phase and the aluminium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call