Abstract

The paper presents a new extrusion method, alternate forward extrusion, in which the punch was replaced with double-split structures so as to achieve the grain refinement for material near the interface of double-split structures. The results showed that the unique loading mode made metal flow sequence and behavior significantly changed during alternate forward extrusion. The additional shear deformation produced by the double-split punch structures resulted in a refining effect on the microstructure of the blank, which was then further refined during flow through the die orifice owing to shear deformation. Compared with the conventional extrusion, the recrystallization process in the alternate forward extrusion process produced grains that were smaller and more homogeneous in size. The recrystallization process was more abundant, and the dislocation density was significantly increased. It can be concluded that the alternate forward extrusion process could achieve fine-grained strengthening, which provided technical support and scientific guidance for the engineering application of magnesium alloy extrusion forming technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.