Abstract

Abstract Thin Gd2O3 films with a thickness of about 150 nm were deposited by pulsed layer deposition on polycrystalline CeO2 substrates to study the structural evolution of the Ce1−xGdxO2−x/2 system with respect to phase formation and cation interdiffusion in the temperature range between 986 °C and 1270 °C. Transmission electron microscopy combined with quantitative energy dispersive X-ray spectroscopy was applied to study the microstructure and to obtain composition profiles across the Gd2O3/CeO2-interface. Gd2O3 was observed to occur in the bixbyite structure up to 1175 °C. The fluorite and the bixbyite phase are found at intermediate compositions without any indication for a miscibility gap. Interdiffusion coefficients were obtained from Gd2O3/CeO2-concentration profiles on the basis of the diffusion-couple solution of the diffusion equation. The activation enthalpy and frequency factor of the diffusion coefficient were derived assuming an Arrhenius-type behavior in the investigated temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.