Abstract

In sheet metal applications, the plastic anisotropy behavior of metallic materials is significantly important, which is affected by the nature of deformation mechanisms with orientation dependency and the microstructure morphology. This study performs a numerical investigation on the anisotropic behavior during plastic deformation affected by the microstructural features. An automotive high-strength fine-structured dual-phase steel (DP1000) is selected as the reference material. The focused microstructural features are phase fraction, grain shape, and crystallographic orientation. The coupling of the fine-resolution representative volume element (RVE) method and the crystal plasticity (CP) model is employed to consider the material microstructural features and to predict the plastic response at the macroscopic level. An optimal RVE is built for the reference material. The modeling approach is validated by the anisotropic predictions of uniaxial tensile tests along material rolling, diagonal, and transversal directions (RD, DD, TD). Then a set of RVEs with varying phase fraction, grain shape, and crystallographic orientation is generated and works as a virtual laboratory to investigate the influence of microstructural features on anisotropic behavior of dual-phase steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call