Abstract
Film growth and microstructural evolution were investigated for sol-gel derived LiNbO3 thin films deposited on lattice-matched single-crystal substrates. Epitaxial LiNbO3 films of about 100 nm nominal thickness were prepared by spin coating a solution of the lithium niobium ethoxide on sapphire (0001) substrates and annealing at 400 °C or 700 °C in a humidified oxygen atmosphere. These films exhibited an epitaxial relationship with the substrate of the type LiNbO3 (0001) || α-Al2O3 (0001) and LiNbO3 [100] || α-Al2O3 [100] as determined by x-ray pole figure analysis. Transmission electron microscopy indicated the epitaxial films annealed at 400 °C consisted of slightly misoriented ∼5 nm subgrains and of numerous ∼10 nm enclosed pores. The microstructure and orientation development of these films was consistent with a heteroepitaxial nucleation and growth mechanism, in which epitaxial nuclei form at the substrate surface and grow upward into an amorphous and porous intermediate film: Epitaxial films annealed at 700 °C contained larger 150-200 nm subgrains and pinholes. Misorientations between adjacent subgrains appeared to be significantly smaller in films annealed at 700 °C than those in films annealed at 400 °C. Hydrolysis of the alkoxide precursor solution prior to spin coating promoted the development of polycrystalline films on single-crystal sapphire substrates. Infrared spectra and thermal analysis indicated that, independent of the degree of the solution hydrolysis, nucleation of LiNbO3 was immediately preceded by decomposition of an amorphous carbonate intermediate phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.