Abstract

In order to improve the biocompatibility and the corrosion resistance in the initial stage of implantation, a phosphate (CaZn2(PO4)2·2H2O) coating was obtained on the surface of pure iron by a chemical reaction method. The anti-corrosion property, the blood compatibility and the cell toxicity of the coated pure iron specimens were investigated. The coating was composed of some fine phosphate crystals and the surface of coating was flat and dense enough. The electrochemical data indicated that the corrosion resistance of the coated pure iron was improved with the increase of phosphating time. When the specimen was phosphated for 30min, the corrosion resistance (Rp) increased to 8006 Ω. Compared with that of the naked pure iron, the anti-hemolysis property and cell compatibility of the coated specimen was improved significantly, while the anti-coagulant property became slightly worse due to the existence of element calcium. It was thought that phosphating treatment might be an effective method to improve the biocompatibility of pure iron for biomedical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call