Abstract

Friction stir processing (FSP) is a method for controlling the microstructure that has been proposed by applying friction stir welding, FSW. In this study, microstructure and mechanical properties of a 7075 aluminum alloy subjected to multi-pass FSP, MP-FSP, are assessed to obtain fundamental knowledge for improving the plasticity of aluminum alloys. The MP-FSP has been applied to 7075 alloy plates with T6 and O tempers, and microstructural characterization has been made by means of optical and scanning electron microscopies together with EDX and EBSD analyses, while mechanical properties were measured by means of micro hardness and tensile tests at room and high temperatures. From microstructural observation, a new zone, PBZ, has been discovered between stir zones, SZs. The PBZ is composed of two types of (fine and coarse) grains, where the coarse grain contains many sub-grains. Hardness in PBZ is intermediate between that in BM and SZ both in T6 and O specimens; hardness generally decreases and increases in T6 and O specimens, respectively, by MP-FSP. In accord to the hardness change, strength at room temperature is decreased by MP-FSP in T6 specimen, and increased in O specimen. Elongation at 773K is increased both in T6 and O specimens because of superplastic deformation. However, local elongation is smaller in PBZ than in SZ, which can be attributed to the microstructural change by the deformation: grain shape remains equiaxed in SZ while it becomes elongated in the tensile direction in PBZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.