Abstract

13Cr4Ni martensitic stainless steels are frequently used in hydroelectric industries. Considering the size and geometry of the turbine runners manufactured in hydroelectric industries, multipass welding procedures are common methods for fabrication and repair. In this research, the microstructures and crystallographic textures of single-pass and double-pass welds have been studied as a first approach to understand a multipass weld. The highest hardness has been measured in the high-temperature heat-affected zone (HAZ) inside the base metal. Similarly, it has been found that the heat of the second pass increases the hardness of the previous pass and produces a finer martensite microstructure. In areas of the HAZ, 3–6 mm from the fusion line, a tempering-like effect is reported; traces of austenite have also been found in these areas documenting the complexity of the microstructure found in the multipass welds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.