Abstract

As micro-CT devices have become widely available, the detailed 3D microstructures of cementitious materials can be more conveniently investigated. However, owing to the resolution required to appropriately represent the cement-paste microstructures, the domain size of the micro-CT sample is limited. By synergistically combining the virtual and real experiments, correlations between the microstructural characteristics and properties of cement paste with various w/c ratios (0.3, 0.4, 0.5, and 0.6) are investigated at different length scales. The porosity from the micro-CT images are correlated with the macro-scale properties obtained from real experiments. At the micro-scale, the homogenized solid phase properties are characterized from the linear attenuation coefficient (LAC) value distribution characteristic of the micro-CT images and are correlated with the modeling parameters of the phase field fracture. According to the results of virtual experiments conducted using the phase field fracture model and the characterization methods, the mechanical properties (stiffness/strength) at the micro- and macro-scale exhibited apparent relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.