Abstract
The microstructure of a pressureless infiltrating 55vol% oxidized SiC preform by Al-8Mg alloy was characterized by transmission electron microscopy (TEM), high resolution TEM (HRTEM), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction. The TEM image of the interface between Al and SiC shows that the surface of SiC is covered by a rough nanocrystal layer of MgAl2O4, Al2O3, and Si, produced by the interfacial reaction of Al, Mg, and SiO2 on the surface of SiC. The Al-SiC interface is also examined by HRTEM to be better understood how MgAl2O4 and Al2O3 are produced. Dendritic Al2O3 crystals are embedded in the pores of the composite generated from the mutual bonding of SiO2 on the surface of SiC. Columnar AlN crystals of about 250 nm in length are bunched vertically on the SiC particle surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Minerals, Metallurgy, and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.