Abstract

Ruthenium nanoparticles deposited on γ-Al2O3 were prepared in one step by a microwave-polyol method and tested in the complete oxidation of propane. The oxidation reaction was carried out under oxygen rich-conditions over the as prepared colloidal 4.9wt.% Ru/γ-Al2O3 catalyst and heated in H2 at 500°C for 15h. The as prepared catalyst contained Ru nanoparticles with mean size of 1.6nm and narrow size distribution, while hydrogen treated metal particles with mean size of 6nm. Before examining catalytic properties, the Ru nanoparticles were subjected to heat treatment in oxygen atmosphere to study their microstructure evolution. HRTEM, SAED, XRD, BET, XPS, as well as hydrogen chemisorption and O2 uptake techniques were applied to characterize the supported Ru nanoparticles. It was established that catalyst with the 1.6nm Ru nanoparticles exhibited slightly higher specific activity than the catalyst with the 6nm Ru nanoparticles. The superior catalytic performance of the Ru nanoparticles could be correlated with a high metallic dispersion and low particle sizes. It was evidenced that the most active sites in the propane oxidation reaction, consist small RuxOy clusters without well-defined stoichiometry. Such surface species were formed at 100–200°C, and as a result the as prepared Ru/γ-Al2O3 catalyst reached 100% propane conversion below 200°C. Moreover, the Ru nanoparticles under oxidative atmosphere up to 250°C, both in oxygen and in reaction of propane oxidation, possesses good stability and the ruthenium phase was not agglomerated. In consequence, recycling of the supported Ru nanoparticles results only in an insignificant loss of the catalytic activity. The very good catalytic performances of supported Ru nanoparticles prepared under microwave-polyol conditions, preserved after consecutive runs, make them promising for practical application in the purification of environmental pollutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.