Abstract

With the goals of protecting boiler tubes from hostile surroundings, increasing thermal efficiency, and minimizing time losses from damage, thermal-spray coating methods for high-temperature operations were created. Ceramic-metal composite materials (e.g., Cr3C2-NiCr) are well known for protecting components from erosion decay in a high-temperature environment. In this investigation, the high-velocity oxy-fuel (HVOF) thermal-spray technique was employed to successfully deposit several variations of feedstocks containing Cr3C2-NiCr and NiCr powders onto a medium-carbon steel substrate, with and without filtering through a 400-mesh screen. Utilizing X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the microstructure features of the deposited coatings were assessed. The experiment results demonstrate that the crystallite and grain sizes of the deposited coatings can be increased by reducing the powder size through a sifting process using a 400-mesh sieve. This procedure also resulted in a coating with a higher density and lower porosity. Furthermore, new compounds including Cr2O3 and MnCr2O4 were formed in the coating layers as indicated by the XRD spectra. These phenomena are in good agreement with the EDS mapping of Cr and O, which reveals highly similar distributions. Manganese was originally a part of the substrate composition. Manganese could diffuse rapidly across the Cr2O3 layer and form the MnCr2O4 compound, indicating the manganese diffusion from the substrate into the Cr3C2-NiCr coating. The formation of MnCr2O4 can be attributed to the prior emergence of the Cr2O3 compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call