Abstract

In this paper, Q235 steel was investigated in order to manufacturing ultra-high strength material. The process of severe cold-rolling and low temperature annealing of lath martensite effectively reduced the crystal size from about 300 nm to 20 nm, and introduced mass weak interfaces in steel, has been demonstrated a new promising technique for producing in-situ composite multi-nanolayer steel with ultra-high strength (b 2112 MPa). Cold rolling and subsequent annealing have great impact on microstructure evolution as well as material mechanical properties. In the as-rolled state, the strength is approximately four times increased than as-received material (hot-rolled state, b 515 MPa), which is attributed to work hardening and grain refining during cold rolling. As the cold-rolled sample subjected to further annealing below 500 , deformed microstructure underwent further recovery and recrystallization, finally became refined equiaxed grains, microstructure characteristics along rolling direction arrangement was decreased; In addition to ultrafine ferrite grains, nano-carbides precipitated uniformly in the specimen annealed at 500 , total elongation increased to 16%, the corresponding yield strength was 1208MPa, much higher than that of as-received samples. The phenomenon of fracture delamination was observed from the specimens, which were cold-rolled and annealed at 500 , and the delamination plane was parallel to the rolling plane. In-situ composite weak interfaces effect has great impact on the fracture surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.