Abstract

By using the melt spinning techniques, the Fe63Co32Gd5 alloy ribbons with 15-50 m in thickness and 3-7 mm in width were prepared at the wheel speeds of 15, 20, 25 and 35 m/s. The rapid solidification microstructures were characterized by three layers, the middle layer of which reaches 80% thickness and forms the column grain of (Fe,Co) solid with Gd solution. Grain refinement takes place with the increase of the wheel speed. And after 0.5 h heat treatment at 823 K, the ribbon thickness becomes larger and the middle layer of column grain is very orderly perpendicular to the ribbon plane. The coercivity of quenched and annealed Fe63Co32Gd5 ribbons both have the inflection point at the wheel speed of 20 m/s, and the tendency is declining. The heat treatment processing makes the coercivity become lower by improving the order of (Fe,Co)17Gd2 compound. The saturation magnetization of quenched ribbons increases with the enhancement of wheel speed, whereas that of annealed ones decreases firstly and then increases. The minimum coercivity is 5.30×103 A/m and the maximum saturation magnetization is 163.62 A·m2/kg, which is obtained in the conditions of the wheel speed of 35 m/s and 0.5 h heat treatment at the temperature of 823 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.