Abstract
The microstructure of an X70 alloy and its dislocation development during one cycle of compression/tension strain has been analysed. The microstructure of the as received material and the dislocation arrangements before, during and after the Bauschinger test have been characterised. Results for this particular alloy show no evidence of grain boundary dislocation pile-ups or of precipitates pinning dislocations. A comparison between the dislocation arrangement in the as received, compressed and compressed-tensioned samples shows the formation of small dislocation cells, implying that the conception of the Bauschinger effect comes from dislocation-dislocation interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.