Abstract

Porous Ag-Bi2O3 composite cathodes on stainless steel (SS) substrate, an excellent mixed-ionic conductor that can be used as cathode material for the intermediate temperature solid oxide fuel cell (IT-SOFC) has been developed using the slurry painting method. Characterisation of the composite cathode includes the thermal analysis, morphology, and porosity of the porous cathode. Thermal analysis of the dried slurry was conducted in order to determine the heating schedule for eliminating the organic components using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). The TGA and DSC analyses confirmed the organic vehicle was fully decomposed below 418oC and the formation of composite cathode oxide phase took place beyond 600oC. The microstructure of the thermally treated cathode was analysed using SEM and XRD. The SEM results showed that the grain size of the cathode increased with the increase of temperature during thermal treatment and the X-ray diffraction (XRD) analyses confirmed the presence of δ-Bi2O3 phase on the cathode. Porosity was obtained using the Archimedes method. The Ag2O3-Bi2O3 cathode on stainless steel substrates was found to have a porosity of 53%, 51%, 39% and 28% upon 1, 2, 3, and 4 coatings, respectively, as well as thermal treatment at 800°C for 1 hour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call