Abstract

Accurately predicting the formability of composites is quite important for designing the materials and optimizing the processing parameters of such components. This paper presents a microstructure-based two-scale model to analyze the deformation behavior of the SiCp/2009Al composite during upsetting. The microstructure-based micro-scale model with a displacement boundary condition that was obtained from a macro-scale model can predict particle cracking, interface failure and matrix fracture by introducing the normal stress criterion, the maximum stress ratio criterion and the shear fracture model. The simulation results show that, during unidirectional upsetting, the crack initiates in the matrix, and then propagates in the matrix, the interface and the particle. Comparing with the unidirectional upsetting, the bidirectional upsetting results in a more uniform stain distribution and a smaller maximum strain, which prevent the initiation of the crack in the matrix. The simulation results compare well with the deformation and fracture patterns observed in experiment, indicating an effective way to optimise the plastic working and designing of composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.