Abstract

A finite element (FE) analysis incorporating particles and grain structure is used to study the localization behavior of direct chill cast (DC) and strip cast (CC) AA5754 alloy sheet. A two-dimensional (2D) plane stress FE model is used to simulate deformation of a sample under uniaxial tension prior to necking. A 2D plane strain model is then used to simulate the post-necking behavior, up to fracture. The plane stress model shows that the strain required for the initiation of necking is similar in both materials, determined predominately by grain-level inhomogeneity, with constituent particles altering the localization path and localization strains, but only weakly. The plane strain model shows more through-thickness thinning during post-necking deformation of DC sheets compared with CC sheets. The CC material is also prone to shear-type failure, while the DC material exhibits a cup–cone-type failure. These differences arise from the microstructural difference between the two samples, where CC sheets contain more intermetallic particles in stringers compared with the DC sheets. This two-stage model is validated by experimental data which show similar limit strains in the DC and CC sheets but quite different fracture strains and fracture surface geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call